

Original article

Characterization of Virulence Genes in Coagulase-Negative Staphylococci recovered from the anterior nares of healthy population.

Ramachandiran Ramamoorthi^{1,2}, Kesavaram Padmavathy^{3*}, Jebadass Jasmine Vinchia⁴

¹Research Scholar, Department of Microbiology, Sree Balaji Dental College and Hospital, Bharath Institute Higher Education and Research, Velachery Main Road, Chennai- 600100, India.

²Tutor, Department of Microbiology, Indira Medical College and Hospital, Pandur – 602001, Tiruvallur, India.

³Professor, Department of Microbiology, Research Laboratory for Oral and Systemic Health, Sree Balaji Dental College and Hospital, BIHER, Velachery Main Road, Chennai- 600100, India.

⁴Reader, Department of Microbiology, Rajas Dental College & Hospital, Kavalkinaru, Tirunelveli, India.

*Corresponding author - Kesavaram Padmavathy

Abstract

Coagulase-negative staphylococci (CoNS), once considered benign commensals, are now recognized as emerging opportunistic pathogens. This study aimed to characterize the presence of key virulence genes (*sea*, *seb*, *pvl*, and *tsst-1*) and methicillin resistance in CoNS isolated from the anterior nares of healthy dental students. Sixty CoNS isolates were recovered from 69 participants and identified using the VITEK-2® system. Methicillin resistance was determined phenotypically and confirmed by PCR detection of the *mecA* gene. SCCmec typing and PCR for virulence genes were performed using established protocols. Methicillin resistance was observed in 75% of isolates, and 45% carried the *mecA* gene. SCCmec type I variant and type V were most common. Only six isolates (10%) harbored virulence genes: *sea* (1), *seb* (2), and *pvl* (3), while *tsst-1* was absent. Notably, *pvl* was exclusively found in methicillin-sensitive strains. One *S. haemolyticus* isolate co-harbored *sea* and *mecA*, indicating a potentially higher pathogenic profile. These findings suggest that nasal CoNS in healthy individuals can act as reservoirs of virulence and resistance genes, posing a potential risk for transmission in healthcare environments.

Keywords: Coagulase-negative staphylococci (CoNS), Methicillin resistance, Virulence genes, *mecA* gene, SCCmec typing.

Introduction

Staphylococcus species are among the most common pathogens found in both community and hospital settings, where they are responsible for a wide range of infections. Among them, *Staphylococcus aureus* is the major species implicated in both community-acquired and nosocomial staphylococcal infections worldwide (1,2). Historically, coagulase-negative staphylococci (CoNS) were considered non-pathogenic contaminants in clinical specimens. However, their role as opportunistic pathogens gained recognition in the 1970s (3). Advances in clinical microbiology have since confirmed that CoNS species, such as *S. epidermidis*, *S. haemolyticus*, and *S. saprophyticus*, can cause serious infections, especially in hospitalized and immunocompromised individuals. These infections include bloodstream infections, prosthetic device-associated infections, and neonatal sepsis (4,5).

Distinguishing between commensal and pathogenic CoNS remains diagnostically challenging, as many CoNS species possess virulence genes similar to those found in *S. aureus* (6). Among these virulence determinants, staphylococcal enterotoxins (SEs) and superantigens are notable for their ability to non-specifically activate T-cells, resulting in massive cytokine release that can lead to symptoms such as vomiting, diarrhea, and toxic shock (7). Till date, 23 staphylococcal enterotoxins have been identified. Of these, five—*sea*, *seb*, *sec*, *sed*, and *see*—are classified as classical enterotoxins and have been studied most extensively. Other enterotoxins, including *seg*, *seh*, and *sei*, also possess pathogenic potential and should not be overlooked. (8,9).

While *S. aureus* is primarily associated with staphylococcal food poisoning (SFP), recent evidence has demonstrated that certain CoNS species also possess the ability to produce enterotoxins (10–12). The *sea*

gene, which encodes Staphylococcal Enterotoxin A (Sea), is frequently detected in *S. aureus* and is a heat-resistant superantigen often implicated in foodborne illnesses. Sporadic detection of this gene in CoNS raises concern about horizontal gene transfer and highlights the possibility that CoNS may act as reservoirs of virulence factors (13).

Similarly, the *sebs* gene encodes Enterotoxin B (*seb*), a potent superantigen involved in food poisoning and toxic shock syndrome. *seb* triggers extensive cytokine release through non-specific immune activation. Though predominantly associated with *S. aureus*, the *seb* gene has also been found in CoNS strains isolated from nasal and clinical samples, suggesting an under recognized virulence potential in these species.(14,15).

In addition to enterotoxins, other virulence genes such as *pvl* and *tsst-1* are of clinical importance. Panton-Valentine leukocidin (PVL) is a bicomponent toxin known for its cytotoxic effects on white blood cells and is commonly linked to community-acquired methicillin-resistant *S. aureus* (CA-MRSA). Studies have examined the presence of the *pvl* gene in methicillin-resistant and methicillin-susceptible *S. aureus* strains (16,17), but the occurrence of *pvl* in CoNS strains, particularly those isolated from nasal swabs, remains unclear. Toxic shock syndrome toxin-1 (*tsst-1*), encoded by the *tsst-1* gene, is the causative agent of toxic shock syndrome, an acute systemic illness characterized by high fever, hypotension, rash, and skin exfoliation (18,19). Although *tsst-1* is predominantly produced by *S. aureus*, especially in cases associated with tampon use, studies have reported its production by CoNS strains as well (20,11).

Despite these findings, the pathogenic potential of CoNS remains underexplored, particularly with regard to their role as carriers of critical virulence genes. This study seeks to determine the presence of four major virulence genes—*sea*, *seb*, *pvl*, and *tsst-1*—in CoNS isolates obtained from nasal carriers. Understanding the distribution of these genes in CoNS may provide valuable insights into their potential pathogenicity and their role as reservoirs of virulence factors within the human nasal microbiota.

Materials and Methods

Bacterial Isolates and Preliminary Identification

A total of 69 nasal isolates of coagulase-negative staphylococci (CoNS) were collected from preclinical dental students (male: female ratio = 14:55). The study protocol was reviewed and approved by the Institute's Ethical Committee of Sree Balaji Dental College & Hospital, Bharath Institute of Higher Education & Research, Chennai, India (Ref No: SBDCH/IEC/06/2021/1). Informed consent was also obtained from all participants before sample collection. Nasal swabs were inoculated on 5% sheep blood agar and MacConkey agar, followed by selective growth on mannitol salt agar (HiMedia Laboratories Pvt. Ltd., India). All plates were incubated at 37 °C for 24–48 hours. Presumptive CoNS colonies were further characterized phenotypically using standard biochemical tests including catalase, oxidase, and coagulase production.

Species-level identification of the CoNS isolates was performed using the VITEK-2® automated identification system (bioMérieux, France) with the GP identification card, according to the manufacturer's instructions.

Methicillin Resistance Detection and SCC *mec*Typing

Methicillin resistance was phenotypically detected using cefoxitin (30 µg) as a surrogate marker, by the Clinical and Laboratory Standards Institute (CLSI) 2025 guidelines (21). Isolates exhibiting resistance to cefoxitin were designated as methicillin-resistant CoNS (MRCoNS). Molecular confirmation of methicillin resistance was carried out by PCR amplification of the *mecA* gene. Isolates positive for *mecA* were further subjected to *SCCmec* typing using specific primers, as previously described in established protocols (24,25).

DNA Extraction

Genomic DNA was extracted using the boiling lysis method. Briefly, 2–3 well-isolated colonies were suspended in 200 µL of nuclease-free water in a sterile 1.5 mL microcentrifuge tube and vortexed for 10 seconds. The suspension was heated at 95 °C for 10 minutes, followed by immediate cooling on ice at –20 °C for 10 minutes. After centrifugation at 8000 rpm for 5 minutes, the supernatant containing genomic DNA was transferred to a new sterile microcentrifuge tube and stored at –80 °C until use.

Molecular Detection of Virulence Genes

The presence of selected virulence genes, including staphylococcal enterotoxins (*sea*, *seb*), Panton-Valentine leukocidin (*pvl*), and toxic shock syndrome toxin-1 (*tsst-1*), was detected using conventional PCR. Primer sequences and amplification conditions were adopted from previously published protocols (22).

The expected PCR amplicon sizes were as follows:

- *sea*: 560 bp
- *seb*: 404 bp
- *pvl*: 433 bp and *tsst-1*: 180 bp

Amplified products were visualized by electrophoresis on a 1.5% agarose gel stained with ethidium bromide and viewed under UV transillumination.

Table 1: Primer Sequences for Detection of Virulence and Resistance Genes in CoNS Isolates

Gene	Primer 5'-3'	Amplicon Size (bp)	Reference
<i>Sea</i>	F-CATTGCCCTAACGTTGAC	619	(23)
	R-CGAAGGTTCTGTAGAAAGTATGG		
<i>Seb</i>	F-CTAAACCAGATGAGTTGCAC	489	(23)
	R-CCAAATAGTGACGAGTTAGG		
<i>Pvl</i>	F-CTGGTGCGATTCTATGGT	433	(22)
	R-CGATATCGTGGTCATCA		
<i>Tsst-1</i>	F-ATCGTAAGCCCTTTGTTG	578	(22)
	R-GTGGATCCGTCAATTGTTG		
<i>mecA</i>	F-TGAGTTCTGCAGTACCGGAT	777bp	(24)
	R-TGATTATGGCTCAGGTACTGCTATCCACC		

Table 2: Representing the Primer Sequences and Annealing Conditions for SCCmec Typing in CoNS Isolates.

Typing	Gene	Primer sequence	Amplicon	Reference	
SCCmec typing	β	F-ATTGCCTTGATAATAGCCYTCT	937 bp	(25)	
	α3	R-TAAAGGCATCAATGCACAAACACT			
	ccrC	F-CGCTCTATTACAAGATGTTAAGGATAAT	518 bp		
		R-CCTTTATAGACTGGATTATTCAAAATAT			
	1272	F-GCCACTCATAACATATGGAA R-CATCCGAGTGAAACCCAAA	415 bp		
	5RmecA	F-TATACCAAAACCCGACAACCTAC	359 bp		
	5R431	R-CGGCTACAGTGATAACATCC			

PCR Amplification for SCCmec Typing and Virulence Gene Detection

PCR reactions for SCCmec typing and detection of virulence-associated genes (*pvl*, *tst*, *sea*, *seb*, and *mecA*) were performed in 20 µl total reaction volumes.

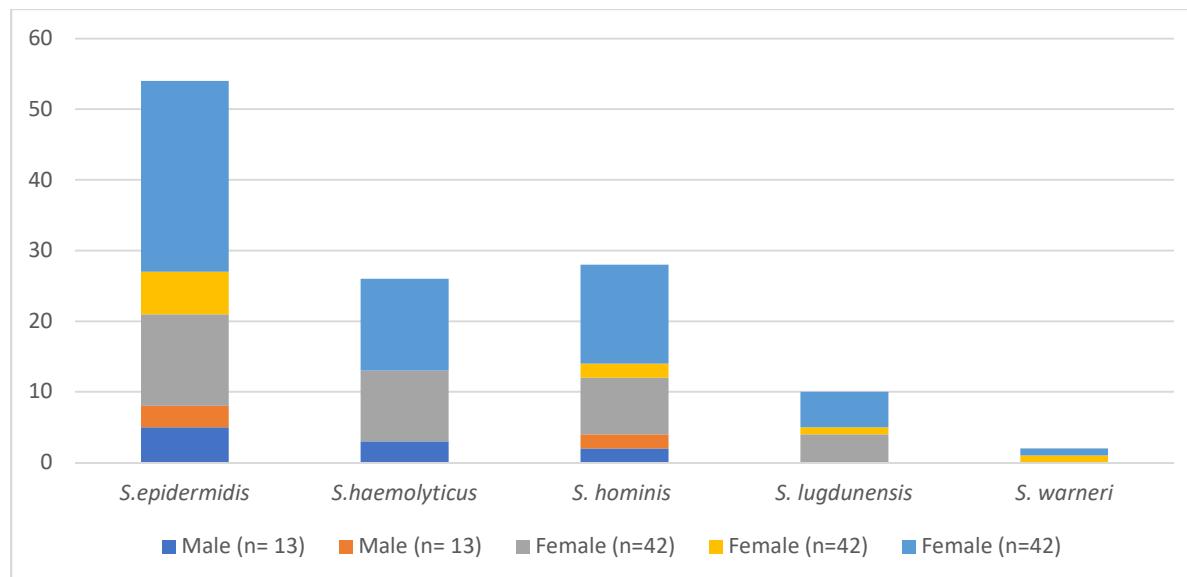
For SCCmec multiplex PCR, the reaction mixture consisted of 10.8 μ l of nuclease-free sterile water, 2 μ l of 10 \times PCR buffer (containing 15 mM MgCl₂), 1 μ l of dNTP mix (10 mM each), and 0.5 μ l of each of eight primers (10 pmol) — including α 3, β , *ccrC*, 1272-F1/R1, and 5RmecA/5R431. Additionally, 0.2 μ l of Taq DNA polymerase (5 U/ μ l) and 2 μ l of DNA template were added to each reaction tube.

For single-gene PCR amplification targeting *pvl*, *tst*, *sea*, *seb*, and *mecA*, the reaction mixtures were adjusted accordingly: 14.4 μ l of nuclease-free water, 2 μ l of 10 \times PCR buffer, 0.5 μ l of dNTP mix, 0.5 μ l of each gene-specific primer (10 pmol), 0.1 μ l of Taq DNA polymerase (5 U/ μ l), and 2 μ l of template DNA.

All PCR mixtures were prepared on ice and gently mixed to ensure homogeneity before amplification.

Thermal Cycling Conditions

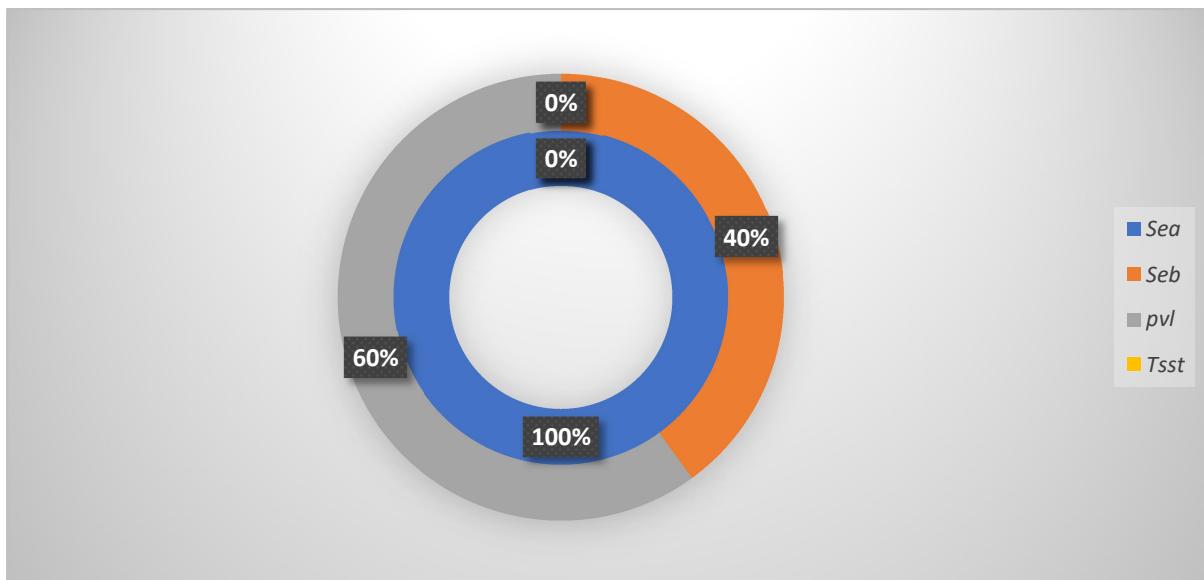
PCR amplifications were carried out under the following conditions: an initial denaturation at 94°C for 3 minutes, followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing at gene-specific temperatures for 30 seconds, and extension at 72°C for 1 minute. The annealing temperatures used were: 58°C for *mecA* and *pvl*, 56°C for *tst* and *sea*, 60°C for *seb*, and 55°C for SCCmec typing. A final extension step was performed at 72°C for 7 minutes.


Results

Out of the 69 dental students enrolled in the study, 55 (13 males and 42 females) were found to carry *Staphylococcus* species in their anterior nares as part of their normal flora. From these 55 students, a total of 60 CoNS (coagulase-negative *Staphylococcus*) isolates were recovered. This included instances where two male and five female students were found to be colonized with dual isolates.

The gender-based distribution of CoNS colonization and methicillin resistance is illustrated in **Figure 1**. It was observed that female students harbored a higher number of isolates compared to males. Among the species identified, *Staphylococcus epidermidis* was the most frequently recovered isolate, followed by *S. haemolyticus* and *S. hominis* subsp. *hominis*.

Importantly, all *S. haemolyticus* isolates were found to be methicillin-resistant. Methicillin resistance was also observed in 80% of *S. lugdunensis*, 71.4% of *S. hominis* subsp. *hominis*, and 66.67% of *S. epidermidis* isolates, highlighting a significant burden of methicillin-resistant CoNS (MRCoNS) among the nasal carriage isolates.


Figure 1: Distribution of Methicillin-Resistant and Methicillin-Sensitive CoNS Species Among Male and Female Dental Students.

Out of 60 CoNS isolates, only 6 were found to contain virulence genes. Among the screened genes, one isolate of *S. haemolyticus* carried the *sea* gene; two isolates of *S. epidermidis* carried the *seb* gene; and one isolate each of *S. epidermidis*, *S. warneri*, and *S. lugdunensis* carried the *pvl* gene. However, none of the CoNS isolates were positive for the *tst* gene. The distribution of these virulence genes among MRCoNS and

MSCoNS isolates is shown in **Figure 2**. Notably, all pvl-positive isolates were methicillin-sensitive, and the seb-positive *S. epidermidis* isolates were also methicillin-sensitive. In contrast, the sea-positive *S. haemolyticus* co-harbored the mecA gene and was further characterized as a variant of SCC mec type I*.

Figure 2: Distribution of Virulence Genes Among MRCoNS and MSCoNS Isolates.

Discussion

The nasal carriage rate of coagulase-negative staphylococci (CoNS) among dental students in our study was 79.7%, which aligns closely with previous studies by (26) (73.3%) and (27) (71.7%). However, several other studies reported comparatively lower carriage rates, including Khatter (58.8%), (28) (52.14%), (29) (39.3%), and (30, 31). Such variations might reflect differences in sampling populations, geographical settings, hygiene practices, and detection methodologies.

A significant finding in our study was the high prevalence (75%) of methicillin-resistant CoNS (MRCoNS) among the nasal isolates, which is considerably higher than those documented by (32) (45.9%), (33) (33.3%), (34) (22%), (35) (7.6%), (31) (5.5%), and (26) (2.1%). This elevated rate is clinically relevant as MRCoNS are known reservoirs of the mecA gene and have the potential to transfer methicillin resistance to *Staphylococcus aureus*, resulting in the emergence of MRSA, as noted by (36). Their study also suggested that MRCoNS nasal carriage could serve as a precursor for MRSA colonization in immunocompromised individuals, and possibly even in healthy individuals.

In our cohort, 45% (31/69) of the CoNS isolates harbored the mecA gene, including 40.6% MRCoNS and 4.4% methicillin-sensitive CoNS (MSCoNS). These findings exceed those reported by (37) (38%) and (27) (16.7%), but remain lower than those from clinical samples such as (22) (92.4%), (38) (82%), and (39) (78.6%).

Regarding SCCmec typing, our results revealed a predominance of SCCmec type I variant and type V among *S. haemolyticus* isolates. All *S. haemolyticus* isolates in our study were methicillin-resistant, and 92.3% were positive for the mecA gene, consistent with findings from (4) and (40). In contrast, *S. epidermidis* showed more SCCmec diversity, with 27.27% of isolates being non-typable. Interestingly, two *S. epidermidis* isolates were mecA-positive but phenotypically methicillin-sensitive, possibly due to gene suppression mechanisms, as described by (41). Our findings contrast with those of (42), who reported a higher prevalence of MRSA with SCCmec type IV among medical students, further supporting the emerging significance of MRCoNS in nasal colonization.

Virulence Gene Profile

The prevalence of virulence genes among nasal carrier CoNS isolates in our study was low. Among the 60 isolates, only six carried virulence genes: *sea*, *seb*, or *pvl*. Notably, *tst* was not detected in any isolate. One *S. haemolyticus* isolate harbored the *sea* gene, two *S. epidermidis* isolates carried *seb*, and *pvl* was found in one isolate each of *S. epidermidis*, *S. warneri*, and *S. lugdunensis*. Interestingly, all *pvl*-positive isolates were methicillin-sensitive.

This finding aligns with (43), who reported a low incidence (1.5%) of *tst* among nasal CoNS from medical students. Similarly, a study by (44) involving bus conductors reported the presence of *sea* and *tst* in 16.7% and 11.1% of isolates respectively, despite *pvl* was absent. These data support the notion that nasal colonizing CoNS strains have a lower frequency of virulence determinants compared to clinical isolates.

In contrast, several studies investigating clinical isolates have shown a significantly higher prevalence of virulence genes. For instance, (45) found that *seb* was more prevalent (27.5%) than *sea* (2.2%) in clinical CoNS. Another study demonstrated that *seb* was the most common virulence gene (62.3%) among clinical *S. epidermidis*, *S. capititis*, *S. hominis*, and *S. warneri*, whereas *tst* was the least frequent (2.1%). Neither *sea* nor *pvl* was detected in that study (22). These differences likely reflect the adaptation of clinical isolates to invasive and immune-evasive environments, in contrast to commensal carriage strains.

Conclusion

The presence of virulence genes (*sea*, *seb*, *pvl*) and the widespread occurrence of methicillin resistance via the *mecA* gene in nasal CoNS isolates from healthy dental students underscore their potential as opportunistic pathogens. These findings emphasize the need for continued surveillance of nasal CoNS, especially in healthcare-associated academic settings where students may serve as reservoirs and vectors of resistant strains. Infection control practices should be routinely enforced to minimize the risk of transmission and colonization.

References:

1. Cookson, B. D., & Phillips, I. (1988). Epidemic methicillin-resistant *Staphylococcus aureus*. *Journal of Antimicrobial Chemotherapy*, 21(Suppl. C), 57–65.
2. Wenzel, R. P., Nettleman, M. D., Jones, R. N., & Pfaller, M. A. (1991). Methicillin-resistant *Staphylococcus aureus*: Implications for the 1990s and effective control measures. *The American Journal of Medicine*, 91(3), S221–S227.
3. Kloos, W. E., & Bannerman, T. L. (1994). Update on clinical significance of coagulase-negative staphylococci. *Clinical Microbiology Reviews*, 7(1), 117–140.
4. Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. *Clinical Microbiology Reviews*, 27(4), 870–926.
5. Otto, M. (2009). *Staphylococcus epidermidis*—the ‘accidental’ pathogen. *Nature Reviews Microbiology*, 7(8), 555–567.
6. Cui, B., Smooker, P. M., Rouch, D. A., Daley, A. J., & Deighton, M. A. (2013). Differences between two clinical *Staphylococcus capititis* subspecies as revealed by biofilm, antibiotic resistance, and pulsed-field gel electrophoresis profiling. *Journal of Clinical Microbiology*, 51(1), 9–14.
7. Koneman, E. W. (1997). *Koneman Diagnóstico Microbiológico: Texto y atlas en color*. Editorial Médica Panamericana.
8. Morandi, S., Brasca, M., Lodi, R., Cremonesi, P., & Castiglioni, B. (2007). Detection of classical enterotoxins and identification of enterotoxin genes in *Staphylococcus aureus* from milk and dairy products. *Veterinary Microbiology*, 124(1–2), 66–72.
9. McLauchlin, J., Narayanan, G. L., Mithani, V., & O'Neill, G. (2000). The detection of enterotoxins and toxic shock syndrome toxin genes in *Staphylococcus aureus* by polymerase chain reaction. *Journal of Food Protection*, 63(4), 479–488.
10. Vernozy-Rozand, C., Mazuy, C., Prévost, G., Lapeyre, C., Bes, M., Brun, Y., & Fleurette, J. (1996). Enterotoxin production by coagulase-negative staphylococci isolated from goats' milk and cheese. *International Journal of Food Microbiology*, 30(3), 271–280.
11. Veras, J. F., do Carmo, L. S., Tong, L. C., Shupp, J. W., Cummings, C., Dos Santos, D. A., Cerqueira, M. M., Cantini, A., Nicoli, J. R., & Jett, M. (2008). A study of the enterotoxigenicity of coagulase-negative and

coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. *International Journal of Infectious Diseases*, 12(4), 410–415.

12. Zhang, Y., Cheng, S., Ding, G., Zhu, M., Pan, X., & Zhang, L. (2011). Molecular analysis and antibiotic resistance investigation of *Staphylococcus aureus* isolates associated with staphylococcal food poisoning and nosocomial infections. *African Journal of Biotechnology*, 10(15), 2965–2972.
13. Mashouf, R. Y., Hosseini, S. M., Mousavi, S. M., & Arabestani, M. R. (2015). Prevalence of enterotoxin genes and antibacterial susceptibility pattern of *Staphylococcus aureus* strains isolated from animal-originated foods in west of Iran. *Oman Medical Journal*, 30(4), 283.
14. Goudarzi, M., Seyedjavadi, S. S., Nasiri, M. J., Goudarzi, H., Nia, R. S., & Dabiri, H. (2017). Molecular characteristics of methicillin-resistant *Staphylococcus aureus* (MRSA) strains isolated from patients with bacteremia based on MLST, SCCmec, spa, and agr locus types analysis. *Microbial Pathogenesis*, 104, 328–335.
15. Rankin, S., Roberts, S., O'Shea, K., Maloney, D., Lorenzo, M., & Benson, C. E. (2005). Panton-Valentine leukocidin (PVL) toxin-positive MRSA strains isolated from companion animals. *Veterinary Microbiology*, 108(1–2), 145–148.
16. Del Giudice, P., Blanc, V., De Rougemont, A., Bes, M., Lina, G., Hubiche, T., Roudière, L., Vandenesch, F., & Etienne, J. (2009). Primary skin abscesses are mainly caused by Panton-Valentine leukocidin-positive *Staphylococcus aureus* strains. *Dermatology*, 219(4), 299–302.
17. Ms, B. (1981). A new staphylococcal enterotoxin, enterotoxin F, associated with toxic-shock-syndrome *Staphylococcus aureus* isolates. *Lancet*, 1, 1017.
18. Bergdoll, M. S., & Chesney, P. J. (1991). *Toxic shock syndrome*. Boca Raton: CRC Press.
19. Touaitia, R., Ibrahim, N. A., Abdullah Almuqri, E., Basher, N. S., Idres, T., & Touati, A. (2025). Toxic Shock Syndrome Toxin-1 (TSST-1) in *Staphylococcus aureus*: Prevalence, molecular mechanisms, and public health implications. *Toxins*, 17(7), Article 323.
20. Udo, E. E., Al-Bustan, M. A., Jacob, L. E., & Chugh, T. D. (1999). Enterotoxin production by coagulase-negative staphylococci in restaurant workers from Kuwait City may be a potential cause of food poisoning. *Journal of Medical Microbiology*, 48(9), 819–823.
21. Clinical and Laboratory Standards Institute. (2025). *Performance standards for antimicrobial susceptibility testing* (35th ed., Supplement CLSI M100).
22. Udo, E. E., Mokadas, E. M., Al-Haddad, A., Mathew, B., Jacob, L. E., & Sanyal, S. C. (2000). Rapid detection of methicillin resistance in staphylococci using a slide latex agglutination kit. *International Journal of Antimicrobial Agents*, 15(1), 19–24.
23. Al-Haqan, A., Boswihi, S. S., Pathan, S., & Udo, E. E. (2020). Antimicrobial resistance and virulence determinants in coagulase-negative staphylococci isolated mainly from preterm neonates. *PLoS One*, 15(8), Article e0236713.
24. Ghanwate, N., Thakare, P., Bhise, P. R., & Gawande, S. (2016). Colorimetric method for rapid detection of oxacillin resistance in *Staphylococcus aureus* and its comparison with PCR for *mecA* gene. *Scientific Reports*, 6(1), Article 23013.
25. Khodabux, R. M., Mariappan, S., Sekar, U., & Khodabux, R. M. (2024). Virulence, susceptibility profile, and clinical characteristics of pathogenic coagulase-negative staphylococci. *Cureus*, 16(8).
26. Akhtar, N. (2010). Staphylococcal nasal carriage of health care workers. *Journal of the College of Physicians and Surgeons Pakistan*, 20(7), 439–443.
27. Abadi, M. I., Moniri, R., Khorshidi, A., Piroozmand, A., Mousavi, S. G., Dastehgoli, K., & Ghazikalayeh, H. M. (2015). Molecular characteristics of nasal carriage methicillin-resistant coagulase negative staphylococci in school students. *Jundishapur Journal of Microbiology*, 8(6), Article e18591.
28. Khatter, S., Kumar, A., Madhumidha, C. V., Yadav, S., & Kaur, I. R. (2022). High prevalence of nasal carriage of methicillin-resistant coagulase-negative staphylococci among medical students in a tertiary care institution in North India. *Indian Journal of Public Health Research & Development*, 13(3).
29. Kaur, D. C., & Narayan, P. A. (2014). Mupirocin resistance in nasal carriage of *Staphylococcus aureus* among healthcare workers of a tertiary care rural hospital. *Indian Journal of Critical Care Medicine*, 18(11), 716.
30. Kumar, P., Shukla, I., & Varshney, S. (2011). Nasal screening of healthcare workers for nasal carriage of coagulase positive MRSA and prevalence of nasal colonization with *Staphylococcus aureus*.
31. Al-Abdli, N. E., & Baiu, S. H. (2014). Nasal carriage of *Staphylococcus* in health care workers in Benghazi hospitals. *American Journal of Microbiological Research*, 2(4), 110–112.
32. Agarwal, L., Singh, A. K., Agarwal, A., & Agarwal, A. (2016). Methicillin and mupirocin resistance in nasal colonizers coagulase-negative *Staphylococcus* among health care workers. *Medical Journal of Dr. DY Patil Vidyapeeth*, 9(4), 479–483.

33. Baral, S. K., Bhattacharai, S., Bhatt, M. P., Manda, D., & Parajuli, I. (2022). Antibiogram of methicillin resistance coagulase-negative staphylococci from nasal carriage of healthcare workers in a tertiary care hospital. *Biomedical Journal of Scientific & Technical Research*, 46(3).
34. Ogefere, H. O., Umaru, G., Ibadin, E. E., & Omorogie, R. (2019). Prevalence of methicillin-resistant staphylococci among apparently healthy students attending a tertiary institution in Benin City, Nigeria. *Nigerian Journal of Basic and Applied Sciences*, 27(1), 114–121.
35. Manyala, P. V., Chaudhury, M., Anagoni, S., Pulicherla, B., & Chaudhury, A. (2021). Nasal carriage of antibiotic-resistant staphylococci among undergraduate medical students, with special reference to methicillin-resistant *Staphylococcus aureus*. *Journal of Clinical and Scientific Research*, 10(1), 2–8.
36. Li, Y., Lin, J., Li, L., Cai, W., Ye, J., He, S., Zhang, W., Liu, N., Gong, Z., Ye, X., & Yao, Z. (2021). Methicillin-resistant coagulase-negative staphylococci carriage is a protective factor of Methicillin-resistant *Staphylococcus aureus* nasal colonization in HIV-infected patients: A cross-sectional study. *Canadian Journal of Infectious Diseases and Medical Microbiology*, 2021, Article 5717413.
37. Shokravi, Z., Haseli, M., Mehrad, L., & Ramazani, A. (2020). Distribution of staphylococcal cassette chromosome *mecA* (SCCmec) types among coagulase-negative staphylococci isolates from healthcare workers in the North-West of Iran. *Iranian Journal of Basic Medical Sciences*, 23(11), 1489.
38. Tluanpuii, V., & Mahajan, R. K. (2025). Detection of the *mecA* gene and its association with antimicrobial resistance among coagulase-negative staphylococci isolated from clinical samples in a tertiary care hospital: A cross-sectional study. *Cureus*, 17(4).
39. Graham, J. C., Murphy, O. M., Stewart, D., Kearns, A. M., Galloway, A., & Freeman, R. (2000). Comparison of PCR detection of *mecA* with methicillin and oxacillin disc susceptibility testing in coagulase-negative staphylococci. *Journal of Antimicrobial Chemotherapy*, 45(1), 111–113.
40. Barros, E. M., Ceotto, H., Bastos, M. C., Dos Santos, K. R., & Giambiagi-Demarval, M. (2012). *Staphylococcus haemolyticus* as an important hospital pathogen and carrier of methicillin resistance genes. *Journal of Clinical Microbiology*, 50(1), 166–168.
41. Hososaka, Y., Hanaki, H., Endo, H., Suzuki, Y., Nakae, T., Nagasawa, Z., Otsuka, Y., & Sunakawa, K. (2007). Characterization of oxacillin-susceptible *mecA*-positive *Staphylococcus aureus*: A new type of MRSA. *Journal of Infection and Chemotherapy*, 13(2), 79–86.
42. Zakai, S. A. (2015). Prevalence of methicillin-resistant *Staphylococcus aureus* nasal colonization among medical students in Jeddah, Saudi Arabia. *Saudi Medical Journal*, 36(7), 807.
43. Budri, P. E., Shore, A. C., Coleman, D. C., Kinnevey, P. M., Humphreys, H., & Fitzgerald-Hughes, D. (2018). Observational cross-sectional study of nasal staphylococcal species of medical students of diverse geographical origin, prior to healthcare exposure: Prevalence of SCCmec, *fusC*, *fusB* and the arginine catabolite mobile element (ACME) in the absence of selective antibiotic pressure. *BMJ Open*, 8(4), Article e020391.
44. Manandhar, MDS (2024). Association of methicillin resistance and virulence genes in staphylococci isolated from paper currency and nasal cavity of bus conductor.
45. Nasaj, M., Saeidi, Z., Tahmasebi, H., Dehbashi, S., & Arabestani, M. R. (2020). Prevalence and distribution of resistance and enterotoxins/enterotoxin-like genes in different clinical isolates of coagulase-negative *Staphylococcus*. *European Journal of Medical Research*, 25(1), Article 48.